Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds.
نویسندگان
چکیده
Neurotrophic factors present as concentration gradients are neurotropic cues that direct axonal growth toward their targets. Multiple factors work together in vivo to ensure axons reach the proper targets, likely interacting with one another via intracellular signalling pathways. Nerve growth factor (NGF) and neurotrophin-3 (NT-3) are neurotrophins known to guide axons as well as promote axonal growth following injury to both the spinal cord and peripheral nerve. These molecules interact with neurons through different tyrosine kinase receptors. In this study, the receptors for these growth factors were shown to be co-localized on E10 chick dorsal root ganglion (DRG) cells, providing an opportunity for synergism. Well-defined concentration gradients of NGF and NT-3 were immobilized for the first time in a cell-penetrable, cell-adhesive scaffold of poly(2-hydroxyethylmethacrylate) and poly(L-lysine). An NGF concentration gradient of 310 ng/mL/mm was required to guide chick DRG neurites. A lower concentration gradient of 200 ng/mL/mm of NGF was shown to elicit guidance when an NT-3 concentration gradient of 200 ng/mL/mm was also present, indicating a synergistic response in the DRG neurons. These gradient scaffolds may be useful for guided regeneration following injury to the spinal cord or peripheral nerve and may also elucidate the mechanism for intracellular signaling of neurotrophic factors.
منابع مشابه
Immobilized concentration gradients of nerve growth factor guide neurite outgrowth.
Axons are guided to their targets by a combination of haptotactic and chemotactic cues. We previously demonstrated that soluble neurotrophic factor concentration gradients guide axons in a model system. In an attempt to translate this model system to a device for implantation, our goal was to immobilize a stable neurotrophic concentration gradient for axonal (or neurite) guidance. Nerve growth ...
متن کاملPatterned PLG substrates for localized DNA delivery and directed neurite extension.
Tissue engineering strategies that enable nerve regeneration will require methods that can promote and direct neurite extension across the lesion. In this report, we investigate an in vitro combinatorial approach to directed neurite outgrowth using gene delivery from topographically patterned substrates, which can induce expression of neurotrophic factors to promote neurite extension and direct...
متن کاملHuman Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro
Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...
متن کاملAcute morphogenic and chemotropic effects of neurotrophins on cultured embryonic Xenopus spinal neurons.
Neurotrophins constitute a family of trophic factors with profound effects on the survival and differentiation of the nervous system. Addition of brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3), but not nerve growth factor (NGF), increased the survival of embryonic Xenopus spinal neurons in culture, although all three neurotrophins enhanced neurite outgrowth. Here we report th...
متن کاملSynthesis of cell-adhesive dextran hydrogels and macroporous scaffolds.
Dextran hydrogels have been previously investigated as drug delivery vehicles and more recently as macroporous scaffolds; however, the non-cell-adhesive nature of dextran has limited its utility for tissue engineering. To overcome this limitation, macroporous scaffolds of methacrylated dextran (Dex-MA) copolymerized with aminoethyl methacrylate (AEMA) were synthesized, thereby introducing prima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2006